Parsing pain perception between nociceptive representation and magnitude estimation.
نویسندگان
چکیده
Assessing the size of objects rapidly and accurately clearly has survival value. A central multisensory module for subjective magnitude assessment is therefore highly likely, suggested by psychophysical studies, and proposed on theoretical grounds. Given that pain perception is fundamentally an assessment of stimulus intensity, it must necessarily engage such a central module. Accordingly, we compared functional magnetic resonance imaging (fMRI) activity of pain magnitude ratings to matched visual magnitude ratings in 14 subjects. We show that brain activations segregate into two groups, one preferentially activated for pain and another equally activated for both visual and pain magnitude ratings. The properties of regions in the first group were consistent with encoding nociception, whereas those in the second group with attention and task control. Insular cortex responses similarly segregated to a pain-specific area and an area (extending to the lateral prefrontal cortex) conjointly representing perceived magnitudes for pain and vision. These two insular areas were differentiated by their relationship to task variance, ability to encode perceived magnitudes for each stimulus epoch, temporal delay differences, and brain intrinsic functional connectivity. In a second group of subjects (n=11) we contrasted diffusion tensor imaging-based white matter connectivity for these two insular areas and observed anatomical connectivity closely corresponding to the functional connectivity identified with fMRI. These results demonstrate that pain perception is due to the transformation of nociceptive representation into subjective magnitude assessment within the insula. Moreover, we argue that we have identified a multisensory cortical area for "how much" complementary and analogous to the "where" and "what" as described for central visual processing.
منابع مشابه
The determinants of laser-evoked EEG responses: pain perception or stimulus saliency?
Although laser-evoked EEG responses are increasingly used to investigate nociceptive pathways, their functional significance remains unclear. The reproducible observation of a robust correlation between the intensity of pain perception and the magnitude of the laser-evoked N1, N2 and P2 responses has led some investigators to consider these responses a direct correlate of the neural activity re...
متن کاملDeterminants of laser-evoked EEG responses: pain perception or stimulus saliency?
Although laser-evoked electroencephalographic (EEG) responses are increasingly used to investigate nociceptive pathways, their functional significance remains unclear. The reproducible observation of a robust correlation between the intensity of pain perception and the magnitude of the laser-evoked N1, N2, and P2 responses has led some investigators to consider these responses a direct correlat...
متن کاملSpatial Sensory Organization and Body Representation in Pain Perception
Pain is a subjective experience that protects the body. This function implies a special relation between the brain mechanisms underlying pain perception and representation of the body. All sensory systems involve the body for the trivial reason that sensory receptors are located in the body. The nociceptive system of detecting noxious stimuli comprises two classes of peripheral afferents, Aδ an...
متن کاملFunctional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations.
UNLABELLED Nociceptive stimuli can induce a transient suppression of electroencephalographic oscillations in the alpha frequency band (ie, alpha event-related desynchronization, α-ERD). Here we investigated whether α-ERD could be functionally distinguished in 2 temporally and spatially segregated subcomponents as suggested by previous studies. In addition, we tested whether the degree of depend...
متن کاملArea-specific representation of mechanical nociceptive stimuli within SI cortex of squirrel monkeys.
While functional imaging studies in humans have consistently reported activation of primary somatosensory cortex (SI) with painful stimuli, the specific roles of subdivisions of areas 3a, 3b, and 1 within SI during pain perception are largely unknown, particularly in the representation of mechanical evoked pain. In this study, we investigated how modality, location, and intensity of nociceptive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 101 2 شماره
صفحات -
تاریخ انتشار 2009